
PROBLEM SETS

Some of these exercises are from Weibel’s K-theory book [3]:

http://www.math.rutgers.edu/~weibel/Kbook/Kbook.pdf

1. PROBLEM SET 1 (MONDAY): LOWER K -GROUPS AND GLnR

Exercise 1.1. Let M be a commutative monoid. Show that the following definitions of
the group completion Gr(M) are equivalent.

i. Gr(M) is the free abelian group on generators [m], for m ∈ M, modulo the sub-
group generated by elements of the form [m]+ [n]− [m+n].

ii. Gr(M) is the set theoretic quotient of M×M by the relation

(m,n)∼ (m+ p,n+ p)

and operation induced from M.
Exercise 1.2. Compute the group completions Gr(M) when M is each of the following
monoids:

i. N with sum,
ii. N\{0} with product,

iii. the monoid of finite sets with disjoint union.
Exercise 1.3. Give an example of a group completion map M → Gr(M) which is not
injective. Can you think of a condition on M which ensures this map is injective?

The next exercise connects the definitions of the algebraic K0 group and the topological
K0 group and is a result due to Swan.
Exercise 1.4. Consider the ring C(X ,C) of continuous functions X → C on a compact
Hausdorff space X , and let η : E → X be a complex vector bundle. Show that there is an
isomorphism

KU0
top(X )∼= K0(C(X ,C)).

Hint: Show that the category of complex vector bundles over X is equivalent to the
category P(C(X ,C)) of finitely generated projective modules over the ring C(X ,C). Note
that the set Γ(E) = {s : X → E : ηs = 1X } of global sections of η forms a projective C(X ,C)-
module.

Similarly, we obtain KO0
top(X )∼= K0(C(X ,R)).

The following exercises are useful for understanding the definition of K1. Let R be a
ring. Let GLR =⋃

GLnR, where we regard GLnR as the subset of GLn+1R consisting of
matrices of the form (

A 0
0 1

)
.

We can identify GLR as the invertible infinite matrices that are the identity off a finite
submatrix.
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An elementary matrix is a matrix of the form I +αϵi, j where α ∈ R, i ̸= j, and ϵi, j is the
matrix that is zero everywhere except the i, j spot, where it is 1. Let EnR < GLnR and
ER <GLR be the subgroups generated by the elementary matrices.

Recall that a group is said to be perfect if it is its own commutator subgroup.
Exercise 1.5. For n ≥ 3, show that EnR is perfect.

For the next exercise we recall Whitehead’s Lemma: if A ∈GLnR, the matrix(
A 0
0 A−1

)
is in E2nR. We can deduce this from the following sequence of row operations.(

I 0
0 I

)
7→

(
0 I
−I 0

)
7→

(
0 I
−I A−1

)
7→

(
A 0
−I A−1

)
7→

(
A 0
0 A−1

)

Exercise 1.6. If A,B ∈ GLnR, show that

(
ABA−1B−1 0

0 I

)
is a product of matrices of

the form

(
X 0
0 X−1

)
. Conclude that ER is the commutator subgroup of GLR.

2. PROBLEM SET 2 (TUESDAY): SCISSORS CONGRUENCE

Exercise 2.1. Prove that two polygons in the Euclidean plane are scissors congruent if
and only if they have the same area.
Exercise 2.2. Consider the upper-half plane model of the hyperbolic plane, together
with its boundary. Here, the points are the points (x, y) in R2 such that y ≥ 0, along
with an additional point at infinity. The lines are those lines parallel to the y-axis (and
including the point at infinity), together with the circles that are orthogonal to the x-
axis. Translations parallel to the x-axis and homotheties around points on the x-axis are
all isometries.

Give an example of two polygons which have the same area but are NOT scissors con-
gruent.

Hint: “has vertices lying on the boundary” is a scissors congruence invariant.
Exercise 2.3. Let X be a geometry which is Euclidean, spherical, or hyperbolic (without
vertices at infinity). Prove that [P] = [Q] in the scissors congruence group P(X ) if and
only if P and Q are scissors congruent.

To check your proof, show it FAILS for the hyperbolic plane with vertices at infinity.

3. PROBLEM SET 3 (TUESDAY): PLUS CONSTRUCTION AND GROUP COMPLETION

Recall that a group is said to be perfect if it is its own commutator subgroup.
Definition. Let X be a based connected CW complex and P a perfect normal subgroup of
π1X . A map X → X+ is said to be a plus construction relative to P when all the following
hold:

i. X+ is a connected CW complex (which we base at the image of the base point of
X ).

ii. The map π1X →π1X+ is surjective with kernel P.
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iii. The map X → X+ induces an isomorphism on homology for any local coefficient
system on X+.

The next exercise gives a construction; the codomain is usually called the plus construc-
tion.
Exercise 3.1. Let X be a connected CW complex with a perfect normal subgroup P.
Form Y from X by attaching one 2-cell ep for each element p of P along a chosen 1-cell
representing p. Then π1Y = (π1X )/P.

• Show that H2Y is isomorphic to the direct sum of H2X and the free abelian group
generated by the classes [ep] represented by the 2-cells ep (for all p ∈ P).

• Show the class [ep] is in the image of the Hurewicz homomorphism π2Y → H2Y .

Choose a representing map S2 → Y for each p, and form Z by attaching 3-cells along
these maps.

• Show that X → Z is a plus construction relative to P.

The following exercise gives the universal property of the plus construction.
Exercise 3.2. Let f : X → X+ be the plus construction from Exercise 3.1, and let

g : X →Y

be any map such that P is in the kernel of π1 g. Show that there is a map

h : X+ →Y

such that h ◦ f ≃ g and that h is unique up to homotopy. Show that if g is a plus con-
struction relative to P, then h is a homotopy equivalence.

Let R be a ring. Recall from Exercises 1.5 and 1.6 of problem set 1 that

GLR =⋃
GLnR,

and EnR < GLnR and ER < GLR are the subgroups generated by the elementary ma-
trices. For n ≥ 3, EnR is perfect, and ER is the commutator subgroup of GLR.

For BGLR, we always take ER as the perfect normal subgroup of π1 to form BGLR+.
For BGLnR (n ≥ 3) we take the normal closure of EnR to form BGLnR+.
Exercise 3.3. Show that for the sequence of maps BGLnR+ → BGLn+1R+, compatible
with the maps BGLnR → BGLnR+ induced by the inclusions, the homotopy colimit,
hocolimBGLnR+, is homotopy equivalent to BGLR+.

Similar to the definition of GLR, let Σ∞ =∪Σn where where we regard Σn as as subset
of Σn+1 by regarding as a permutation on n elements as a permutation on n+1 elements
by permuting the first n elements. The definition of A∞ is similar.
Exercise 3.4. Recall from lecture the Barratt–Priddy–Quillen theorem, that BΣ+∞ ≃
QS0.

i. Show that BΣ+∞ ≃RP∞×BA+∞.
ii. Show that the map πs

1 → K1(Z), induced by the map Σn → GLn(Z) taking each
permutation to its permutation matrix, takes the generator η ∈ πs

1
∼= Z/2Z to the

element −1 ∈ K1(Z).
Definition. A topological monoid M is grouplike if π0M is a group.

The map M → ΩBM is sometimes called group completion because in the homotopy
category of topological monoids, this map is initial for maps out of M into grouplike
topological monoids. (This follows from the fact that when M is grouplike the map M →
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ΩBM is a weak equivalence.) A basic result about group completion is the following,
which can be found in [1, App. Q] and [2]. In the statement, note that because ΩBM is
grouplike, the images of elements of π0M in H∗(ΩBM) are multiplicative units.

Theorem. If π0M is in the center of H∗M, then the canonical map

H∗M[(π0M)−1]→ H∗(ΩBM)

is an isomorphism.

Exercise 3.5. Let M = ∐
BGLnR (for n ≥ 0), a topological monoid under block sum of

matrices. Show that BGLR+ is homotopy equivalent to the zero component of ΩBM.

Exercise 3.6. Let M = ∐
BΣn (for n ≥ 0), a topological monoid under block sum of per-

mutations. Show that BΣ+∞ is homotopy equivalent to the zero component of ΩBM.

4. PROBLEM SET 4 (THURSDAY): THE S• CONSTRUCTION AND Q CONSTRUCTION

Exercise 4.1. Let R be a ring. In the lectures we have shown that the Grothendieck
group of projective R-modules (without any finitely generated condition imposed) is triv-
ial. Show that the higher K-theory of the category of projective R-modules is trivial in
any degree.

Exercise 4.2. Show the THH of the category of all R-modules, or of all projective R-
modules, is trivial.

Exercise 4.3. Let C be an exact category. Show that π1BQC is the free abelian group
on isomorphism classes of objects of C , modulo the relation [A]+[C]= [B] for every exact
sequence A → B → C.

Exercise 4.4. Let C be a Waldhausen category. This exercise considers Thomason’s
alternative definition of the K-theory space and shows that it is equivalent to Wald-
hausen’s S q-construction.

Define a simplicial category wTqC whose objects at level n are sequences of cofibrations

A0 ↣ A1 ↣ · · ·↣ An

in C and morphisms are maps A i → A′
i making such diagrams commute that satisfy the

condition that for every i ≤ j the induced map

A′
i ∪A i A j → A′

j

is a weak equivalence. Show the realizations of the bisimplicial sets NqwS qC and NqwTqC
are equivalent.

Hint: Consider an intermediate simplicial category wT+q C , which adds in the data of
quotients to the objects of the categories TnC . Then show that the realization of its
nerve is equivalent to both realizations bisimplicial sets we are considering. So we get
the desired equivalence via a zig-zag.

Exercise 4.5. Prove the “Swallowing lemma”: Suppose A is a subcategory of B. Let
AnB be the simplicial category with objects n-chains of maps in A and morphisms
given by diagrams with vertical maps in B. Then AqB is a simplicial category. Show
that the inclusion of bisimplicial sets NqB → NqAqB is a weak equivalence on geometric
realization.
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5. PROBLEM SET 5 (THURSDAY-FRIDAY): CYCLIC NERVES AND THH

Exercise 5.1. Show that if A is non-commutative, the trace

Mn(A)→ A

is not invariant under conjugation, tr(P AP−1) ̸= tr(A). Show that this is corrected when
we pass to HH0(A)= A/(ab = ba).

The resulting map Mn(A)→ HH0(A) is called the Hattori–Stallings trace.
Exercise 5.2. Let A be a ring and let Mn(A) be its ring of n× n matrices. Define the
multitrace by

Mn(A)⊗(k+1) → A⊗(k+1)

A0 ⊗ A1 ⊗·· ·⊗ Ak 7→ ∑
i0,i1,...,ik

A0
i0 i1

⊗ A1
i1 i2

⊗·· ·⊗ Ak
ik i0

.

Check that this is a map of chain complexes (or simplicial abelian groups)

Ncycq Mn(A)→ Ncycq A

that on H0 takes each matrix to its Hattori–Stallings trace. This map is an equivalence

HH∗(Mn(A))→ HH∗(A),

and is useful in understanding the Dennis trace.
Exercise 5.3. A category enriched in abelian groups C consists of objects a,b, . . ., abelian
groups C (a,b) for each pair of objects a and b, and composition maps

C (a,b)⊗C (b, c)→C (a, c)

that are associative and unital. Note we are writing our compositions from left to right,
which is the opposite of the usual convention for composition of functions.

i. Check that if C has one object, this is the same thing as a ring.
ii. Check that if A is a ring, the category of left A-modules AMod can be enriched in

abelian groups, taking the morphisms to be the abelian groups HomA(M, N) of
A-linear maps.

iii. Explain how the ring A sits inside the category AMod. Does the matrix ring
Mn(A) sit inside AMod?

Exercise 5.4. A functor of spectral categories F : C →D is a function on objects, F : obC →
obD , and maps of spectra

F : C (a,b)→D (F(a),F(b))

that commute with composition and the identity. Check that such a functor induces a
map of cyclic bar constructions THH(C )→THH(D ).
Exercise 5.5. Let C be any spectral category, a ∈ obC any object, and let A =C (a,a) be
the corresponding ring spectrum of maps from a to itself.

i. Show that there is a spectral functor

(5.6) C → AMod

defined by sending b to C (a,b).
ii. If C is the category of A-modules, explain why the functor in (5.6) is a pointwise

equivalence of spectral categories.
In other words, it is a bijection on the objects and gives an equivalence on the
mapping spectra.
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If you prefer, instead prove the corresponding statement for rings and categories en-
riched in abelian groups.
Exercise 5.7.

i. Recall the proof that the nerve sends natural transformations F ⇒ G of func-
tors F,G : C → D to homotopies of maps NqC → NqD . Show adjunctions go to
homotopy equivalences.

ii. Show that the cyclic nerve sends natural isomorphisms F ∼=G of functors

F,G : C →D

to homotopies. Equivalently, show that the cyclic nerve takes equivalences of
categories to homotopy equivalences.
You can do this either directly or using a Dennis–Waldhausen–Morita argument.

iii. Give an example of an adjunction of categories for which the cyclic nerves are not
equivalent to each other.

Exercise 5.8. Let C be any category. Consider the bisimplicial set i qNcycq C whose
(p, q)th level is (p+1)× q grids of maps of the form

X00
∼=��

// X10
∼=��

// · · · // X p0
∼=��

// X00
∼=��

X01∼=��
// X11∼=��

// · · · // X p1
∼=��

// X01∼=��
...
∼=
��

...
∼=
��

...
∼=
��

...
∼=
��

X0q // X1q // · · · // X pq // X0q.

The cyclic nerve Ncycq C includes into the diagonal of this bisimplicial set by making
all of the vertical maps into identity maps. Prove that this is gives an equivalence on
realizations. (The argument is similar to that of the swallowing lemma.)

Show that we can form an explicit inverse by taking each p× p grid to the sequence of
maps illustrated by the dashed lines below:

X00
∼=��

//

&&

X10
∼=��

// · · · // X p0
∼=��

// X00
∼=��

X01∼=��
// X11∼=��

//

%%

· · · // X p1
∼=��

// X01∼=��
...
∼=
��

...
∼=
�� %%

...
∼=
��

...
∼=
��

X0p // X1p // · · · // X pp //

FF

X0p.

If we include the nerve of isomorphisms i qC into this bisimplicial set and then apply this
explicit inverse, we get the map taking ( f1, . . . , fq) to ( f1, . . . , fq, f −1

q · · · f −1
1 ). This can be

used to show that the two different definitions of the Dennis trace we encountered agree
with each other.

6. PROBLEM SET 6 (FRIDAY): GROUP HOMOLOGY AND HIGHER SCISSORS
CONGRUENCE

Exercise 6.1. Let G be a discrete group and let A be an abelian group with a left action
of G through homomorphisms, i.e. a Z[G]-module. Recall that group homology Hn(G; A)
is defined as TorZ[G]

n (Z, A). In other words, we may calculate group homology by taking a
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projective resolution of A as a Z[G]-module, applying the functor Z⊗Z[G] (−), and taking
homology.

i. Explain why 0th homology H0(G; A) is isomorphic to the coinvariants AG , the
abelian group formed from A by applying the relation a ∼ ga for all a ∈ A and
g ∈G. Conclude that the scissors congruence group P(X ,G) is isomorphic to the
homology group H0(G;P(X ,1)), or to H0(G/N;P(X , N)) for any normal subgroup
N ≤G.

ii. Consider Q as an abelian group under addition. Show that its group homology is
a Z in degree 0, aQ in degree 1, and is zero in all higher degrees. (You might want
to compute the group homology of Z first and recall that homology commutes with
filtered colimits.)

iii. Building on the previous exercise, suppose that V is a rational vector space, con-
sidered as a group under addition. Prove that its group homology with Z coeffi-
cients is the exterior algebra

H∗(V ;Z)∼=Λ∗(V ).

iv. Define the polytope group to be Pt(X ) = P(X ,1). Prove that in the case of the
Euclidean line, we have a short exact sequence

0→Pt(E1)→⊕
R

Z→Z→ 0.

v. Recall that short exact sequences of coefficient groups 0 → A → B → C → 0 in-
duce long exact sequences on group homology H∗(G;−). Use this to compute the
translational scissors congruence group P(E1,T(1)), where T(1) ∼= R is the group
of translations of E1 (as a discrete group).
We could have obtained the same answer by a more direct, elementary argument!
But this approach also tells us the higher homology groups as well.

Exercise 6.2. Suppose X is n-dimensional Euclidean geometry En, E(n) is the group
of Euclidean isometries, and T(n) ∼= Rn is the subgroup of translations. Show that the
group homology of T(n) and of E(n) is a rational vector space in every degree. (Hint: use
the first to prove the second!)

This can be used to show that the Euclidean scissors congruence groups P(En) are ra-
tional vector spaces. The rationality of the spherical groups P(Sn) and the hyperbolic
groups P(Hn) is an open problem.

Exercise 6.3. The “Center Kills” Lemma states that if g ∈ Z(G) is an element in the
center of G and g acts on the coefficients A by multiplication by r ∈Z, then the homology
groups H∗(G; A) are all (r−1)-torsion. Use this to argue that

H∗(O(2n−1);Qt)= 0.

Here Qt is the Z[O(2n−1)]-module given by the rationals Q, with g ∈O(2n−1) acting by
+1 if g preserves orientation and −1 if g reverses orientation.

On the other hand, H∗(O(2n);Qt) is not zero. What changes about the argument here?
(This is related to the fact that Dehn invariants only exist for subspaces of even codi-
mension.)

Exercise 6.4. Compute H∗(SO(2);Q), where SO(2) is considered as a discrete group.
(The answer is completely different from the one you may have seen in a unit on charac-
teristic classes.)
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Exercise 6.5. If H ≤G is a subgroup and A is a Z[H]-module, we can form the induced
module

G⊗H A :=Z[G]⊗Z[H] A ∼=
⊕
G/H

A.

The Shapiro Lemma states that the homology of this induced module agrees with the
homology of A:

H∗(G;G⊗H A)∼= H∗(H; A).
Use this to compute the homology of O(2) with coefficients in O(2)⊗SO(2)Q

∼=Q⊕Q. Can
you recover H∗(O(2);Q) and H∗(O(2);Qt) from this?

These groups turn out to be an important part of the picture of higher scissors congru-
ence: the higher scissors congruence groups of the plane E2 are given by

Pm(E2)∼= Hm+2(E(2);Qt)
/

Hm+2(O(2);Qt).
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